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Additions are successful with a variety of substituted ac­
ceptors (entries 7-10). It is interesting to note that the diene 
system of entry 10 suffers exclusive /3-carbon addition as op­
posed to the terminal additions observed in similar systems with 
Gilman reagents. ' ' We have encountered difficulty only in the 
case of/3,/3-disubstituon (entry 11) where 7-proton abstraction 
predominates. This substitution pattern is often observed to 
interfere with Michael-type additions."3 

In all cases observed to date involving additions of organo-
lithium derivatives, the resulting adducts (2a) undergo facile 
alkylation with common alkyl halides. Methylations with 
methyl iodide occur rapidly at 0 0 C and n-alkyl iodides are 
consumed within 0.5 h at room temperature.1 2 This high re­
activity is in sharp contrast with the low reactivity of enolates 
generated through the use of Gilman reagents.13 

While the acylphosphorane moiety in 3a is highly resistant 
to attack by nucleophiles, the phosphonium salts resulting from 
treatment of these ylides with mineral acids are readily cleaved 
by nucleophilic solvents.14 The acyl ylides 3a obtained from 
the conjugate addition-alkylation process are readily converted 
into simple esters merely by heating in the presence of the 
desired alcohol containing an equivalent amount of concen­
trated hydrochloric acid. An example of this highly efficient 
conversion is shown in eq 2.1 5 

O 
,CQ2Et CH3OH1H

+^ 
OCH3 

PPh3 (10W 
(2) 

An overall transformation may be envisioned involving se­
quentially: derivatization of unsaturated carboxylic acids, 
/3-alkylation by charge directed conjugate addition, a-alkyl-
ation of the resulting anionic adducts with electrophiles, fol­
lowed by terminal manipulation of the control element Z. The 
potential utility of such a sequence is enhanced by the ability 
to conduct high yield "one pot" conversions without the iso­
lation of intermediates as illustrated in eq 3. 
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Preliminary experiments have shown that the principle of 
charge-directed conjugage addition is applicable to a number 
of systems where carbonyl interaction with an adjacent charge 
center suppresses 1,2-carbonyl addition. These studies will be 
detailed in future reports. 
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Stereochemistry and Mechanism of the Photochemical 
Addition of Methanol to Cycloheptenones 

Sir: 

The photochemical addition of alcohols to cycloalkenes 
(C6-Cs) has been extensively investigated.1 The reaction 
proceeds via carbocations formed by protonation of the double 
bond in a highly strained "trans" intermediate.1-2 The additions 
are not stereospecific, since mixtures of cis and trans adducts 
are formed. 

(J + ROD 

,H 
C'-«D 

i"'H 
,D 

OR 
Cycloheptenones and cyclooctenones undergo a formally 

similar photoaddition of alcohols and other nucleophiles.3 We 
have investigated their stereochemistry for the first time, and 
wish to report that these additions are stereospecific. Our 
results have important mechanistic consequences. 

Irradiation4 of I 5 in furan (0.05 M, 8 h) gave an 83% yield6 

of the trans adducts 2a and 2b.7-8 We infer from this result that 
1 photoisomerizes to I t which is trapped by the furan.9 Irra­
diation of 1 in methanol (0.05 M, 6.5 h) gave ether 3 as the sole 
product,8 in 6 1 % (73%) yield.6 In the N M R spectrum of 3, H 6 
appeared as a doublet of quartets (<5 3.68) showing that one of 
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the four possible coupling constants (with methylene protons 
at C5 and C7) was unique. Decoupling by irradiation at 8 2.00 
(C5 methylene) gave H6 as a doublet of doublets, / = 7.5 and 
5.0 Hz. Thus H6 was coupled differently with the two protons 
a tC7 . 

Table 1 

2a (48%) 
mp 126-127 0C 

2b (35%) 
mp 128-130 0C 

To obtain stereochemical information, 1 was irradiated in 
CH3OD. The N M R spectrum of the adduct 3d showed that 
the addition was stereospecific. H6 appeared as a doublet of 
triplets (7 = 8 and 5 Hz) and irradiation at & 2.02 (C5 meth­
ylenes) converted the signal for H6 to a doublet (/6 7 = 8 
Hz).10 

The photoaddition of methanol to 1 is unequivocally ste­
reospecific, but the assignment of trans geometry to the 
methoxyl and deuterium (in 3d) rests on the premise (consid­
ered reasonable") that Jtrans > JC1S. To obtain further support 
for this assignment, we studied the addition of acetic acid to 
1. Irradiation of 1 in acetic acid (0.05 M, 15 h) proceeded 
slowly to give 48 in 30% (65%) yield.612 The NMR spec-
triyn of 4d showed H6 as a doublet of triplets (7 = 7.5 and 6.0 
Hz) which, after decoupling by irradiation of the C5 methylene 
protons, collapsed to a doublet (J 6j = 7.5 Hz). Thus the cou­
pling pattern was similar to that of 3, but with a smaller dif­
ference between ,/trans and JC1S. 

AcOH (D) 

4 (4d) 

It was anticipated and found that 4 readily eliminates acetic 
acid thermally (200 0C) to give 1. This elimination is expected 
to be syn.13 However, the analogous electron-impact 1,2-
elimination is expected to be nonconcerted and much less 
stereoselective.14 The mass spectral results for the elimination 
of AcOH/AcOD from 4d as a function of inlet temperature 
are shown in Table I. As the inlet temperature is raised, more 
of the elimination should occur thermally (syn). As expected 
for the stereochemistry in 4d, preferential loss of AcOH is 

Inlet 
temp, 0C M+(%) 

(M+ - ROH)/ 
(M+ - ROD) 

4d (R = Ac) 

3d (R = CH3) 

rt" 
150 
160 
rt" 
150 

<0.5 
<0.5 
<0.5 
40 
17 

0.98 
2.63 
3.7 
1.49 
5.88 

rt = room temperature. 

favored.15 Interestingly, a similar trend was seen with 3d, ac­
companied as expected by a decrease in the intensity of M + . 

We conclude that the moieties of the addend in 3 and 4 are 
trans to one another. This result suggests that 1 photoisom-
erizes to It which then adds methanol or acetic acid in what 
is effectively a concerted, regio- and stereospecific syn man­
ner.16-17 
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conjugated. Consequently, if the addition is stepwise, the intermediate 
carbanion is formed with charge localized on the a-carbon, and a proton 
must be transferred to it before any conformational change necessary for 
charge derealization can occur.18 

(18) Note Added in Proof. We have since obtained similar results with the 
photochemical addition of methanol to other seven- and eight-membered 
ring enones. 
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A Novel Synthesis of (±)-Vermiculine 

Sir: 

The structure of the cytotoxic antibiotic vermiculine (I)1 

contains a 16-membered ring comprised of two identical C] o 
hydroxyacid units lactonized in head-to-tail fashion.2 Recently, 
Corey has described a total synthesis of (±) - l via coupling of 
modified constituent halves as their pyridyl thioesters.3 We 
now report a different synthesis of 1, based on the alternative 
strategy of construction of a fully functionalized, acyclic hy­
droxyacid, which undergoes intramolecular lactonization to 
the completed macrolide. 

Dienol acetate 3 4 (1760, 1706 cm"1; 5 5.72 (1 H, s)), pre­
pared from Hagemann's ester (2) by treatment with isoprop-
enyl acetate containing p-toluenesulfonic acid (reflux),5 was 
reduced with sodium borohydride in aqueous dioxane (95 0 C, 
2 h) to hydroxy ester 4 (68%, 3500, m o . c r r r 1 ; 8 3.98 (1 H, 
m)) and a minor quantity of the isomeric, allylic alcohol.6 

Further reduction of 4 with lithium aluminum hydride (ether, 
0 0 C, 6 h) afforded diol 5 (82%; 8 3.99 (1 H, m), 4.14 (2 H, d)), 
which was smoothly oxidized with manganese dioxide 
(CH2Cl2, 18 h) to aldehyde 6 (83%, 1675 cm"1; 8 2.15 (3 H, 
s), 10.16(1 H, s)). Condensation of 6 with the phosphonate 7, 
derived from tert-buty\ a-bromoacetate7 and trimethyl 
phosphite, in the presence of sodium hydride (THF, 0 0 C, 0.5 
h) gave the diene ester 8 (82%; 3500, 1705, 1630 cirT1; 8 1.52 
(9 H, s), 2.88 (3 H, s), 3.92 (1 H, m), 5.70 (1 H, d, J = 16 Hz), 
7.75(1 H , d , 7 = 16 Hz)). The desired £ configuration of the 
a/5-unsaturated linkage is clearly established by the coupling 
constant of vinyl protons in 8.8 

O 

(MeO)2PCH2CCM-Bu 
7 

Compound 8 contains the structural elements of the mo-
nomeric unit (vermiculinic acid) from which the diolide system 
of 1 is derived, with the 1,6-diketo functions coveniently 
masked at this stage as a cyclohexenyl double bond. Attach­
ment of the second Cio component to 8 began with acylation 
using bromoacetyl bromide (pyridine-ether, 0 0 C, 1 h) to yield 
9 (89%; 1740, 1710 cm"1; 5 3.82 (2 H, s), 5.06 (1 H, p, / = 5 
Hz)), followed by conversion with trimethyl phosphite (neat, 
110 0 C, 1 h) to phosphonate 10 (88%; 8 3.01 (2 H, d, / = 21 

Hz)). The latter underwent condensation with aldehyde 6 in 
the presence of sodium hydride (THF, 0 0 C , 0.5 h) to give a 
95% yield of 11, which was an approximately 1:1 mixture of 
diastereomers with respect to the pair of asymmetric centers 
in the two cyclohexane rings (8 3.92 (1 H, m), 5.10 (1 H, m), 
5.75 (2 H, d, / = 16 Hz), 7.76 (1 H, d, J = 16 Hz), 7.81 (1 H, 
d,J = 16Hz)). 

The remaining synthesis operation, an oxidative deannu-
lation of 11 to a tetraketone, was effected via bisepoxide 12 (8 
1.26 (6 H, s)), prepared in 91% yield from 11 by oxidation with 
w-chloroperbenzoic acid (CH2Cl2,24 h). Selective epoxidation 
of the 7,5-double bonds in 11 was anticipated on the basis of 
the greater nucleophilicity of these tetrasubstituted linkages,9 

a supposition which had been previously verified by a selective 
epoxidation of the monomeric system 8. Hydrolytic opening 
of the two epoxide functions, without damage to the tert-butyl 
ester, was accomplished using 8% perchloric acid (THF, 25 
0 C) and gave pentahydroxy diester 13 in good yield as a mix-

CO2Et CO2Et 

CO2-̂ -Bu 

OH OR 
4,R = CO9Et 8 , R = H 
5,R = CH2OH 9,R = COCH2Br 
6,R = CHO 10, R = COCH,PO(OMe)2 

COW-Bu 

O^ Jd 

OM-Bu OM-Bu 

C^ ^ O 

14, R = <-Bu 
15,R = H 
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